检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢昌元[1,2] 熊忠阳[1] 杨超[3] 吴雪刚[2] 张光华[1] 黄仕建[4,5]
机构地区:[1]重庆大学计算机学院,重庆400044 [2]长江师范学院计算机工程学院,重庆408100 [3]四川省经济信息中心,成都610021 [4]重庆大学光电工程学院,重庆400044 [5]长江师范学院电子信息工程学院,重庆408100
出 处:《计算机应用研究》2016年第3期933-936,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61190122);重庆市教委科学技术研究项目(KJ15012028)
摘 要:针对大型人脸数据库中进行人脸匹配识别时存在识别速度时间长、影响实时应用效果的问题,提出了一种基于凸包的人脸粗分类新方法。该方法从几何模式特征出发,以抽取人脸的二维凸包不变量特征为基础,使用层次聚类对人脸的轮廓线进行粗分类,建立人脸数据库的层次索引结构。在实验中,将MUCT和PICS人脸数据库的正面人脸图像粗分为六类,分类的平均准确率约为89%。验证了该方法在人脸数据库上执行快速粗分类是可行的。The face recognition system involves large amounts of data matching operation under the condition of massive faces database. It will give rise to problem such as long retrieval time and can't match the real-time requirement. To solve the problems above,this paper proposed a new method for face coarse classification based on convex hull,which started from the geometric features of pattern,used the two-dimensional convex hull invariant features to extract the face contour lines. It then classified the contour lines to several subclasses through hierarchical clustering method. Finally,it divided the massive faces database into a number of sub databases resulting in hierarchy architecture,and classified the frontal face images in MUCT and PICS face databases into six classes in the experiment by the proposed method respectively. The average accuracy rate of classification is about 89%. The experiment also verifies the feasibility of the proposed method for face coarse classification in massive faces database.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30