检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中师范大学,武汉430079 [2]武汉大学信息管理学院,武汉430072
出 处:《情报学报》2015年第12期1296-1303,共8页Journal of the China Society for Scientific and Technical Information
基 金:国家自然科学基金项目数字图书馆社区的知识聚合与服务研究(项目编号:71273197)的研究成果之一
摘 要:近年来,基于标签构建用户兴趣模型受到了重点关注,然而也有研究对其有效性提出了质疑。为验证标签是否适合作为兴趣建模的基础数据、效果是否更加理想,本文以电影社会化标注系统为例,采用空间向量的方法分别基于标签和项目进行了兴趣建模,并以用户召回率、推荐项目召回率和准确率为评价指标进行了效果比较分析。结果显示,基于标签建模策略效果显著差于基于项目建模策略;但是在用户标注影片较多的情况下,基于标签建模策略也取得较好效果。研究的局限性主要表现在两个方面:一是分析对象选用的是影片,其结果未必适用于音乐、图书、网页等类型的资源;二是研究仅针对影片类型兴趣进行了建模,没有建立综合模型,因而其结果可能未全面反映基于标签和项目建模策略的效果。In past years, a number of studies focus on tag-based user profiles modeling, but its effectiveness is questioned by some studies. To verify whether social tags are suitable for user profiles modeling, and whether tag-based user profiles' effectiveness is better, this paper takes movies as sample, uses space vector model to construct tag-based and item-based user profiles, and compares their effectiveness by the following three evaluation indexes: user recall, item recall and precision. Based on the results, it is can be concluded that the effectiveness of item-based user profiles is apparently better than tag-based user profiles; but tag-based user profiles for users who tagged enough movies performs well. Limitations of this study are as follows: this study only takes movies as sample, and they may not reprehensive for other types of resources, e.g. music, books and webpages; user profiles only cover users' interests on movie genres, and the results may not comprehensively reflect the effectiveness of tag-based and item-based user profiles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222