检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘广强[1] 于欣[2] 舒振宇[2] 余心杰[2]
机构地区:[1]太原科技大学电子信息工程学院,太原市030024 [2]浙江大学宁波理工学院,浙江宁波315100
出 处:《中国农机化学报》2016年第3期250-254,共5页Journal of Chinese Agricultural Mechanization
基 金:国家自然科学基金(31201446);国家星火计划(2012GA701012);浙江省自然科学基金(LY13F020018);宁波市民生科技项目(2013C11026);宁波市自然科学基金(2014A610185)
摘 要:为实现利用计算机视觉技术提升枸杞品种分类效果的目的,研究基于稀疏表示(SR)的枸杞品种分类方法。首先获取枸杞的图像,并提取枸杞图像的颜色和形态特征参数,得到枸杞训练样本的数据词典矩阵。在此基础上,利用稀疏表示方法对枸杞测试样本进行分类。基于稀疏表示分类方法的第一步是利用数据词典矩阵对测试样本进行稀疏性表示,得到测试样本的稀疏表示系数;第二步,利用测试样本的稀疏表示系数,对测试样本进行重构;第三步,计算重构样本与测试样本之间的残差,通过比较残差的大小来确定测试样本的类别。本文将稀疏表示分类方法与深度神经网络(DNN)、最小二乘支持向量机(LSSVM)、BP网络和支持向量机(SVM)等方法的识别结果做了对比和分析。试验结果表明,稀疏表示分类方法对于3个枸杞品种的综合分类准确率为98.33%,获得了最好的分类效果。In order to achieve better effect of wolfberry classification based on computer vision technology, a classification method based on sparse representation is proposed for discriminating the varieties of wolfberry precisely. Firstly, we obtain the wolfberry images, extract the color and shape feature parameters of the wolfberry images, and then, get the matrix of data dictionary. Secondly, sparse representation method is applied to accomplish the wolfherry classification. To be more specific, the first step of this classification process is to represent the test samples by the matrix of data dictionary and to obtain the sparse representation coefficients; By making use of the sparse representation coefficients, the second step is to reconstruct the test samples; In the third step, residuals between the reconstructed samples and the test samples are calculated and varieties that test samples should belong to can be confirmed. At last of this paper, the sparse representation method is compared with some other methods, such as the deep neural network (DNN), least squares support vector machine (LSSVM), BP network and support vector machine (SVM). Experimental results demonstrate that the overall classification accuracy of the sparse representation method is 98.33%, which has the best classification effect among five methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15