检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学经济与贸易学院,广东广州510006
出 处:《情报科学》2016年第3期71-75,共5页Information Science
基 金:国家级社会科学基金项目项目(14BTQ009)
摘 要:随着移动互联网的发展,个性化信息推荐研究逐渐开始将用户情境作为信息推荐中重要的影响因素,但目前的研究多数是停留在如何将用户在不同情境下的资源偏好融入到推荐系统中,缺少对不同情境中各个要素对信息推荐的影响研究。由此,本文建立了结合情境的用户偏好模型,提出运用BP神经网络方法来预测不同情境下的用户对资源类别的偏好,同时结合项目协同过滤算法来实现精准的个性化信息推荐。最后将试验结果与传统的项目协同过滤算法对比,推荐准确率有了提高。With the development of mobile internet, the researches on the personalized information recommendation gradu- ally began to take user context as the important factors influencing the information recommendation, but most of the current researches are how integates users" different situations of resources preference into the recommendation system, the re- searches of the influence of various elements in different situation on information recommendation are lacking. Thus, This paper established a user preference model which combined with the situation, proposed to predict different situations of us- er preferences on the categories of resources by the method of BP neural network, and combined the collaborative filtering algorithm to achieve personalized information accurate recommendation. With the comparison of experimental results and collaborative filtering algorithm, the recommendation effectiveness is improved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222