检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱会杰[1,2] 王新晴[1] 芮挺[1] 李艳峰[1] 王东[1]
机构地区:[1]解放军理工大学野战工程学院,江苏南京210007 [2]总装工程兵科研一所,江苏无锡214035
出 处:《北京理工大学学报》2016年第1期19-24,共6页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(61472444;61472392)
摘 要:提出了一种融合多尺度信息的高效移不变稀疏编码算法,并用于机械故障诊断.将移不变稀疏编码作为分类器应用于故障诊断,直接对振动信号进行训练和识别,不需要提取特征和预处理.为进一步提升效果,将不同尺度的移不变稀疏编码分类器融合在一起.经实验验证,即使在训练样本和测试样本负载不同的情况下,文中方案仍然能够以较高的准确率识别出轴承的故障位置和程度.与其他方法相比,文中方法的准确率、鲁棒性更高,具有一定的工程应用价值.An efficient shift invariant sparse coding (SISC) algorithm which combined multi scale information was proposed for machinery fault diagnosis. The SISC was applied as a classifier for fault diagnosis, and it could directly train and recognize the vibration signals without feature extraction or pre-processing. What's more, multi scale SISC classifiers were combined for better performance. Validated by experiments, although the loads of training samples and testing samples were not the same, this scheme could still precisely determine the fault location as well as the severity of fault for bearings. Compared with other methods, the proposed algorithm shows high accuracy , strong robustness and a certain value for engineering application.
分 类 号:TN165.3[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.84.251