基于块压缩感知的SAR层析成像方法  被引量:6

SAR Tomography Based on Block Compressive Sensing

在线阅读下载全文

作  者:王爱春[1,2,3] 向茂生[1] 

机构地区:[1]中国科学院电子学研究所微波成像技术国家级重点实验室,北京100190 [2]中国科学院大学,北京100049 [3]中国资源卫星应用中心,北京100094

出  处:《雷达学报(中英文)》2016年第1期57-64,共8页Journal of Radars

基  金:国家发改委卫星及应用产业发展专项项目发改委高技【2012】2083号~~

摘  要:基于压缩感知(Compressive Sensing,CS)的SAR层析成像方法(SAR Tomography,TomoSAR),虽然实现了对目标的3维重构,但对于具有结构特性的目标其重构性能较差。针对这一问题,该文提出了采用块压缩感知(Block Cornpressive Sensing,BCS)算法,该方法首先在CS方法基础上将具有结构特性的目标信号重构问题转化为BCS问题,然后根据目标结构特性与雷达参数的关系确定块的大小,最后对目标进行块稀疏的l_1/l_2范数最优化求解。相比基于CS的SAR层析成像方法,该方法更好地利用了目标的稀疏特性和结构特性,其重构精度更高、性能更优。仿真数据和Radarsat-2星载SAR实测数据的试验结果验证了该方法的有效性。While the use of SAR Tomography(TomoSAR) based on Compressive Sensing(CS) makes it possible to reconstruct the height profile of an observed scene,the performance of the reconstruction decreases for a structural observed scene.To deal with this issue,we propose using TomoSAR based on Block Compressive Sensing(BCS),which changes the reconstruction of the structural observed scene into a BCS problem under the principles of CS.Further,the block size is established by utilizing the relationship between the characteristics of the structural observed scene and the SAR parameters,such that the BCS problem is efficiently solved with a block sparse l1/l2 norm optimization signal model.Compared with existing CSTomoSAR methods,the proposed BCS-TomoSAR method makes better use of the sparsity and structure information of a structural observed scene,and has higher precision and better reconstruction performance.We used simulations and Radarsat-2 data to verify the effectiveness of this proposed method.

关 键 词:SAR层析成像技术 压缩感知 块压缩感知 稀疏特性 结构特性 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象