基于遗传神经网络的军用油库选址优化模型  被引量:3

Optimization Model of Military Depot Location Based on Genetic Neural Network

在线阅读下载全文

作  者:李横[1] 郭鹏[1] 胡汝翼 黎泓志 

机构地区:[1]后勤工程学院军事油料应用与管理工程系,重庆401311

出  处:《兵器装备工程学报》2016年第2期69-73,共5页Journal of Ordnance Equipment Engineering

基  金:总后勤部2015年资助项目"高原高寒地区军队油库安全管理研究"

摘  要:影响军用油库选址的因素众多且具有不确定性,传统的凭人主观选址和线性规划等方法选址不能充分体现各影响因素的主次成分及相互关系,为了解决该问题,将遗传算法和神经网络相结合,利用德尔斐法建立选址指标体系并进行指标的量化及归一化,将各底层指标的归一化值作为神经网络的输入,将代表选址等级的布尔变量作为神经网络的输出,利用遗传算法来优化神经网络的连接权值和阈值,然后用足够的样本借助Matlab工具训练此模型,通过模型的自适应学习,直到得到能正确表示网络内部特征的那组阈值。实际应用表明,所建模型的操作性和实用性强,为军用油库实际选址提供直接的决策依据。Because the factors that affect the location of military oil depot are numerous and uncertain,the traditional method of subjective location and linear programming can not fully reflect the primary and secondary components and their relationship. So the combination of genetic algorithm and neural network is suitable for dealing with the above problems. By the method of establishing index system of location,we quantified and normalized index. The normalized values of the underlying indicators were used as inputs to the neural network. The Boolean variable representing the location level is the output of the neural network. The connection weights and threshold used genetic algorithm to optimize the neural network,and then used the Matlab tool to train the model,through the model of adaptivet learning,until it can indicate the internal threshold characteristics of the network group correctly. The practical application shows that the operation and practicability of the model is strong,which provides a direct basis for the actual location of the military oil depot.

关 键 词:军用油库 选址 遗传算法 神经网络 

分 类 号:E233[军事—军事理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象