基于层次模糊熵和改进支持向量机的轴承诊断方法研究  被引量:22

A study on rolling bearing fault diagnosis method based on hierarchical fuzzy entropy and ISVM-BT

在线阅读下载全文

作  者:李永波[1] 徐敏强[1] 赵海洋[1] 黄文虎[1] 

机构地区:[1]哈尔滨工业大学深空探测基础研究中心,黑龙江哈尔滨150001

出  处:《振动工程学报》2016年第1期184-192,共9页Journal of Vibration Engineering

基  金:国家自然科学基金资助项目(10772061)

摘  要:提出一种新的轴承故障特征提取方法——层次模糊熵(Hierarchical Fuzzy Entropy,HFE)。层次模糊熵包括层次分析和模糊熵计算。与多尺度模糊熵相比,层次模糊熵既分析信号的低频分量又分析信号的高频分量,因而能提取更全面、准确的故障信息。改进支持向量机(Improved support vector machine based binary tree,ISVMBT)相比其他多分类器具有识别率更高的优势,因此提出了一种基于层次模糊熵和改进支持向量机的轴承故障诊断方法。首先将HFE作为故障特征提取工具,然后将所得的特征向量输入到改进支持向量机进行模式识别。通过轴承故障诊断的工程应用,表明该方法可以有效提取轴承故障特征,实现轴承不同故障类型和故障程度的准确识别。A new rolling bearing fault feature extractor called hierarchical fuzzy entropy(HFE)is proposed in this paper,which is composedcomprises the of hierarchical procedure and the fuzzy entropy calculation.Compared with multi-scale fuzzy entropy(MFE)method,HFE method considers both the low and high frequency components of the vibration signals,which can provide a much more accurate estimation of entropy.Besides,improved support vector machine based binary tree SVM(ISVMBT)has the priority of high recognition accuracy compared with other classifiers.HenceTherefore,in this paper we proposed a novel rolling bearing fault diagnosis method based on HFE and ISVM-BT is proposed in this paper.Firstly,HFE is utilized to extract fault features and then the fault features are fed into the ISVM-BT to automatically fulfill the fault patterns identifications.The experimental results show the proposed method is effective in recognizing the different categories and severities of rolling bearings.

关 键 词:故障诊断 层次模糊熵(HFE) 改进支持向量机(ISVM-BT) 滚动轴承 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象