机构地区:[1]北京大学深圳研究生院信息工程学院,广东深圳518055 [2]北京信息科技大学信息微系统研究所,北京100101 [3]北京大学微纳电子学研究院,北京100871
出 处:《强激光与粒子束》2016年第6期135-139,共5页High Power Laser and Particle Beams
基 金:The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Great Wall Scholar,CIT&TCD20150320);the National Basic Research Program of China(project no.2015CB057201);National Natural Science Foundation of China(61176102,60976083and 60501007);Beijing Natural Science Foundation of China(3102014)
摘 要:随着系统级封装(SIP)所容纳的电子元器件和集成密度迅速增加,传统的散热方法(热通孔、风冷散热等)越来越难以满足系统级封装的热管理需求。低温共烧陶瓷(LTCC)作为常见的封装基板材料之一,设计并研制了三种内嵌于LTCC基板的微流道,其中包括直排型、蛇型和螺旋型微流道(高度为0.3mm,宽度分别为0.4,0.5和0.8mm)。通过数值仿真和红外热像仪测试相结合的方式分析了微流道网络结构、流体质量流量、雷诺数、材料热导率对内嵌微流道LTCC基板换热性能的影响,实验结果表明:当去离子水的流量为10mL/min,热源等效功率为2 W/cm^2时,直排型微流道的LTCC基板最高温度在3.1kPa输入泵压差下能降低75.4℃,蛇型微流道的LTCC基板最高温度在85.8kPa输入泵压差下能降低80.2℃,螺旋型微流道的LTCC基板最高温度在103.1kPa输入泵压差下能降低86.7℃。在三种微流道中,直排型微流道具有最小的雷诺数,在相同的输入泵压差下有最好的散热性能。窄的直排型微流道(0.4 mm)在相同的流道排布密度和流体流量时比宽的微流道(0.8mm)能多降低基板温度10℃。此外,提高封装材料的热导率有助于提高微流道的换热性能。With the obvious increase of integrating capacity and density in System-in-Package (SIP), it ismore and more difficult for traditional cooling methods (e. g. , thermal vias through substrate, air cooling) tomeet the cooling requirements of high power application. Liquid cooling microchannels integrated into LTCCpackaging substrate have been demonstrated as a competitive packaging substrate for SIP of high power applica-tions. In this paper, heat transfer performance of microchannels embedded in LTCC packaging substrate for e-lectronic cooling application is investigated. Proprietary process is selected to make LTCC microchannel sam-ples. Three kinds of microchannels are designed and samples are fabricated, including serpentine, spiral andparallel microchannels. The effects of channel pattern, Reynolds numbers, flow rate and thermal conductivityof substrate on heat transfer performance of LTCC substrate are experimentally measured and simulated withcommercial software COMSOL multi-physics. The heat transfer performance in term of maximum workingtemperature drop is measured with infrared thermometer. With the deionized water flow rate of 10 mL/min andequivalent power source of 2 W/cm2 , parallel microchannel cuts the substrate temperature by 75.4 ℃ under in-let pressure drop of 3.1 kPa, serpentine microchannel by 80.2 ℃ under inlet pressure drop of 85.8 kPa, spiralmicrochannel by 86.7 ℃ under inlet pressure drop of 103.1 kPa. Among the three microchannel patterns, par-allel microchannel has the smallest Reynolds numbers and the best cooling performance under the same inletpressure drop. Narrow parallel microchannel (channel width 0.4 mm) with the same channel density and flowrate can cut substrate working temperature 10 ℃ more than the relatively wide microchannel (channel width 0.8mm). Simulation results indicate that thermal conductivity of LTCC packaging substrate can enhance heattransfer performance by 13%. Results show microchannels embedded in LTCC substrate are suitable for ther-mal m
分 类 号:O551[理学—热学与物质分子运动论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...