检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学经济管理学院,江苏南京210094
出 处:《数学的实践与认识》2016年第4期109-116,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金(71271114)
摘 要:在多变量模式识别领域,变量间经常会存在复共线性,复共线性不仅会影响参数估计的效果,也会使变量的敏感性出现显著异常.马田系统是以马氏距离作为测量尺度的多变量模式识别方法,复共线性会通过马氏距离影响马田系统变量筛选的效果和判别的准确率.基于岭估计提出了一种新的测量尺度—岭马氏距离,利用岭迹法确定岭参数,将其引入马田系统使得马田系统对病态数据具有更好的耐受性.通过案例验证了岭马氏距离可以很好的克服复共线性,并提高马田系统的判别准确率.Multicollinearity is often existed among variables in the area of multi-dimensional pattern recognition, which will affect the performance of parameter estimation, make parameters extremely sensitive on slight variable's perturbation. Mahalanobis-Taguchi System (MTS) is a methodology of multi-dimensional pattern recognition whose measure scale is based on the mahalanobis distance(MD), multicollinearity will affect the performance of variable screening and discrimination accuracy in MTS through MD. This paper analysis the effect of multicollinearity to MD and presents a new measuring scale function-ridge mahalanobis distance (RMD) based on the ridge estimation, the ridge parameter will be determined by the ridge trace. And introduce RMD to MTS which make it more robust to bad data. The case validates that RMD can be very good to overcome multicollinearity and improve the accuracy of MTS.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186