组分中药药性预测平台构建  被引量:8

Forecasting platform construction for properties of herb components

在线阅读下载全文

作  者:胡亚楠[1,2] 王梅[1] 曹佳[3] 王耘[1] 乔延江[1] 

机构地区:[1]北京中医药大学中药信息工程研究中心,北京100102 [2]河南中医学院,郑州450008 [3]北京林业大学信息学院,北京100083

出  处:《中华中医药杂志》2016年第3期965-967,共3页China Journal of Traditional Chinese Medicine and Pharmacy

基  金:国家自然科学基金项目(No.81373985;No.81173568);北京中医药大学科研创新团队支持项目(No.2011-CXTD-11);教育部新世纪优秀人才支持项目(No.NECT-11-0605)~~

摘  要:目的:利用中药药理作用与药性之间的关系建立药性预测平台。方法:运用数据挖掘分类功能中的决策树算法构建了中药药性与药理作用之间的关系模型,将决策树模型用C++语言进行编程,在V++环境下进行编译,药理作用和药性通过规则相联系等方法,建立药性预测模型及平台。结果:利用药性预测平台对药性进行预测,在一定程度上正确反映出中药组分的药性理论内涵。结论:使用药性预测平台实现了简便、直观、快速的进行药性预测。Objective: To build a forecasting platform for properties of herb components based on the relationship between pharmacological effects and properties of Chinese medicines. Methods: The relational model between pharmacological effects and properties of Chinese medicines was built by using decision tree algorithm, and the decision tree model was transformed into rules by using C++ programming language under the environment of V++ compilation. The pharmacological effects and herb properties were linked by the rules to establish the forecasting platform for herb properties. Results: The medicinal theory connotation of herb components could be reflected correctly to some extent by using the forecasting platform for herb properties. Conclusion: The forecasting platform for herb properties could be used to predict the properties of Chinese medicines succinctly, intuitively, and rapidly.

关 键 词:组分药性 决策树 数据挖掘 药理作用 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] R285.1[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象