检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU Fang ZHU JinWei
机构地区:[1]School of Statistics and Mathematics,Central University of Finance and Economics [2]The State Key Laboratory of Scientific and Engineering Computing,Institute of Computational Mathematics and Scientific,Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences
出 处:《Science China Mathematics》2016年第4期789-808,共20页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.10971059,11071265 and 11171232);the Funds for Creative Research Groups of China(Grant No.11021101);the National Basic Research Program of China(Grant No.2011CB309703);the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences;the Program for Innovation Research in Central University of Finance and Economics
摘 要:To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.
关 键 词:combination discretization eigenvalue finite element postprocessing two-scale
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.230