检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋涛[1] 宋一凡[1] 贺拴海[1] 文锋[1,2]
机构地区:[1]长安大学桥梁与隧道陕西省重点实验室,西安710064 [2]中交公路规划设计院,北京100010
出 处:《北京工业大学学报》2016年第4期521-526,共6页Journal of Beijing University of Technology
基 金:国家自然科学基金资助项目(50908017);广东省交通运输厅科技资助项目(科技-2014-02-022);中央高校基本科研业务费专项资助项目(201493212002)
摘 要:为方便计算矮塔斜拉桥的竖向自振频率,基于双塔塔梁固结、墩支承的矮塔斜拉桥,应用Rayleigh法,推导了一阶对称和反对称竖弯振动频率公式,提出了名义单位质量的抗弯刚度的概念,对此公式的可行性进行了算例验证,并讨论了该公式的应用对象.研究结果表明:支承条件对该体系的竖弯频率影响较大,进行频率计算时应准确考虑支承条件;给出的能量法得到的竖弯基频计算值与有限元值误差能满足概念设计阶段的要求;该公式适用于双塔塔梁固结、墩支承的矮塔斜拉桥,抗风设计规范中的竖弯基频公式不适用于此类桥梁.To calculate vertical frequency of extradosed cable-stayed bridge conveniently, a extradosed cable-stayed bridge with double-towers was taken as a research object, while the tower was rigidly connected with the girder and supported by the pier. Frequency formulas for the first symmetric and asymmetric vertical vibration modes were induced by the Rayleigh method and the nominal unity mass anti-bending rigidity concept was proposed. Finally, the presented theoretical formulas were validated by the engineering project, and the application condition was discussed. The results indicate that constraint condition has a great influence on vertical frequency, which should be correctly considered in frequency calculation. The error between values calculated by the proposed formulas and the finite element method ( FEM) meets with the requirement of conceptive design. The proposed formulas can be applied to extradosed cable-stayed bridge, but the vertical frequency formulas in the wind-resistant design specification cannot be applied to the such bridge.
分 类 号:U441.3[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145