检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑玛丽[1]
出 处:《吉林大学学报(理学版)》2016年第2期202-206,共5页Journal of Jilin University:Science Edition
基 金:国家自然科学基金天元基金(批准号:11426073);贵州省科学技术基金(批准号:2014GZ81365)
摘 要:考虑Doi Hom-Hopf模的半单性或可约性.设(H,A,C)是一个Doi Hom-Hopf-数据,先利用忘却函子将Doi Hom-Hopf模范畴MCA中的对象映为右(A,β)-Hom模范畴MA中对象,再通过对MA中可分单同态进行变形,建立Doi Hom-Hopf-数据积分概念,并利用该积分证明Doi Hom-Hopf模的Maschke型定理.作为应用,定义了Hom-Yetter-Drinfeld模范畴,并证明HomYetter-Drinfeld模范畴是Doi Hom-Hopf模范畴的子范畴,从而得到了Hom-Yetter-Drinfeld模的Maschke型定理.The author discussed the reducibility or semisimpleness of Doi Hom-Hopf modules. Given a Doi Hom-Hopf datum( H,A,C),the forgetful functor was used to send the objects in the category MCAof Doi HomHopf modules into the category MAof right( A,β)-Hom-modules,and look for a deformation of a splitting map of a monomorphism in the category MAso as to lead to the integral for Doi Hom-Hopf datum( H,A,C). With the help of the integral introduced,the author proved the Maschke-type theorem for Doi Hom-Hopf modules.As an application,the author defined the category of Hom-Yetter-Drinfeld modules and proved the category of Hom-Yetter-Drinfeld modules being a subcategory of our category of Doi Hom-Hopf modules,then the author obtained immediately the version of Maschke type theorem for Hom-Yetter-Drinfeld modules.
关 键 词:Monoidal Hom-Hopf代数 DOI Hom-Hopf模 MASCHKE型定理 Hom-Yetter-Drinfeld模
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.153.221