检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《云南民族大学学报(自然科学版)》2016年第2期145-151,共7页Journal of Yunnan Minzu University:Natural Sciences Edition
基 金:国家自然科学基金(50979029);河海大学自然科学基金(2008431111)
摘 要:在简要分析径流影响因素的基础上,将改进的小波-ARMA分频模型应用到年径流预测中.讨论不同小波分解方式和拓延方式下沱沱河站年径流量预测,并将预测效果与其它3种模型预测进行比较.经过实证研究结果表明:整体分解方式下模型预测精度高,分步分解方式下模型实用性强.该方法拓宽了小波分析理论在影响因素不稳定条件下年径流量研究的应用范围,为径流量的短期科学预测提供了一种新方法.With a brief analysis of the influencing factors of runoff, this paper intends to apply the improved wavelet - ARMA frequency - division model to the annual runoff prediction. It discusses the annual runoff prediction of the Tuotuo River with a consideration of the different ways of wavelet decomposition and future extension, and compares the prediction result with the results by three other models. It concludes that the prediction accuracy of this model with integral decomposition is very good, while the practicability of this model with multi - step decomposition is good. This method expands the application of the theory of wavelet analysis to the annual runoff research with unstable influencing factors, and provides a new approach to the short - term runoff prediction in a scientific way.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147