检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2016年第4期1137-1140,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61103223);江苏省自然科学基金重点资助项目(BK2011003)
摘 要:对于分布不同或分布相似的未知类型的网络攻击,目前的异常检测技术往往不能达到预期的效果。针对上述问题,研究了一种基于迁移技术和D-S证据理论的网络异常检测方法。首先用迁移学习方法对已知网络攻击进行建模,此模型在构建时考虑了不同分布的异常攻击间的差异;然后用其训练得到的分类器对未知的网络行为进行分析,结合D-S证据理论,可以检测出分布不一致的未知攻击类型。实验结果表明,该方法泛化了传统的网络异常检测技术,对未知的网络异常有着较高的检测率。The current approaches of anomaly detection cannot effectively detect unknown network attacks,which follow the same or different distribution. To solve this problem,this paper proposed a new network anomaly detection using transfer learning technique and D-S theory. At first,this paper created a model for known network attacks with transfer learning method,which considered the distinctions in anomaly attacks following different distribution. Secondly,combined with D-S theory,the classifier could pinpoint unknown network attacks as outliers. The results show that the proposed detection approach has a higher detection rate for unknown network anomalies.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.144.240