检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机工程与应用》2016年第6期86-89,98,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61174021)
摘 要:为了提高分布式传感网络的估计精度,提出了一种新的自适应一致性算法。该算法在每次迭代时只需部分节点工作,即进行目标状态的监测。通过节点之间二进制信息的交换来调整每次迭代时的一致性权值,使得每次迭代时工作节点所占的权值更大,进而将该一致性算法与卡尔曼滤波相结合对目标状态进行估计。对该算法进行数值仿真,并与其他一致性加权算法进行比较,验证了该算法的有效性。To improve the estimation accuracy of distributed sensor networks, this paper proposes a new adaptive consensus algorithm. In each iteration of the algorithm, it requires only some nodes to work, that is monitoring target state. The consensus weight between the nodes is adjusted by exchange of binary information to make the weights connected to the nodes that observe the state greater. It combines the consensus algorithm with Kalman filter to estimate target state. A numerical example is given to illustrate the proposed algorithm and compared with other consistency weighted algorithm, it shows the effectiveness of this approach.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145