检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学电子与控制工程学院,西安710064
出 处:《计算机工程与应用》2016年第6期197-203,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.61203374);中央高校基本科研业务费专项资金(No.CHD2010ZY012)
摘 要:传统Mean Shift目标跟踪算法通过bin-bin颜色直方图表示目标特征,直方图中往往会混入背景颜色信息,造成跟踪不准确;同时由于Mean Shift算法具有局部最优性,当目标受到严重遮挡丢失后,不能对目标重新定位跟踪。为了解决上述问题,在颜色直方图和抗遮挡能力方面进行了改进。利用交叉bin颜色直方图代替传统的bin-bin颜色直方图表示目标特征,减少背景颜色的干扰,提高Mean Shift算法跟踪精度;当目标受到严重遮挡丢失后,通过一种尺度变化调整机制,在全局范围内搜索目标位置,提高Mean Shift算法抗遮挡能力。实验显示,改进后的算法不仅在背景干扰大时对目标的跟踪精度更高,而且当目标受到严重遮挡丢失后,也能够对目标重新定位跟踪。Traditional Mean Shift tracking algorithm uses bin-bin color histogram which is often mixed with background color information to express target characteristics, causing inaccurate tracking; meanwhile Mean Shift algorithm has local optimality, which cannot reposition and track the object when the object is lost after severe occlusion. In order to solve the above problems, this paper makes improvements from aspects of color histogram and anti-occlusion capability. To improve the tracking accuracy of Mean Shift algorithm, it uses cross bin color histogram instead of traditional bin-bin color histogram expressing target characteristics, reducing the influence of background color. Then, to improve anti-occlusion capability of Mean Shift algorithm when the object is lost after severe occlusion, it uses a scale change adjustment mechanism,searching object position in global scope. Experiments show that, the improved algorithm not only has better tracking performance in the case of big background noise, but also can reposition and track the object when the object is lost after severe occlusion.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.205.74