改进的抗遮挡MeanShift目标跟踪算法  被引量:8

Improved anti occlusion Mean Shift tracking algorithm

在线阅读下载全文

作  者:田浩[1] 巨永锋[1] 王培[1] 

机构地区:[1]长安大学电子与控制工程学院,西安710064

出  处:《计算机工程与应用》2016年第6期197-203,共7页Computer Engineering and Applications

基  金:国家自然科学基金(No.61203374);中央高校基本科研业务费专项资金(No.CHD2010ZY012)

摘  要:传统Mean Shift目标跟踪算法通过bin-bin颜色直方图表示目标特征,直方图中往往会混入背景颜色信息,造成跟踪不准确;同时由于Mean Shift算法具有局部最优性,当目标受到严重遮挡丢失后,不能对目标重新定位跟踪。为了解决上述问题,在颜色直方图和抗遮挡能力方面进行了改进。利用交叉bin颜色直方图代替传统的bin-bin颜色直方图表示目标特征,减少背景颜色的干扰,提高Mean Shift算法跟踪精度;当目标受到严重遮挡丢失后,通过一种尺度变化调整机制,在全局范围内搜索目标位置,提高Mean Shift算法抗遮挡能力。实验显示,改进后的算法不仅在背景干扰大时对目标的跟踪精度更高,而且当目标受到严重遮挡丢失后,也能够对目标重新定位跟踪。Traditional Mean Shift tracking algorithm uses bin-bin color histogram which is often mixed with background color information to express target characteristics, causing inaccurate tracking; meanwhile Mean Shift algorithm has local optimality, which cannot reposition and track the object when the object is lost after severe occlusion. In order to solve the above problems, this paper makes improvements from aspects of color histogram and anti-occlusion capability. To improve the tracking accuracy of Mean Shift algorithm, it uses cross bin color histogram instead of traditional bin-bin color histogram expressing target characteristics, reducing the influence of background color. Then, to improve anti-occlusion capability of Mean Shift algorithm when the object is lost after severe occlusion, it uses a scale change adjustment mechanism,searching object position in global scope. Experiments show that, the improved algorithm not only has better tracking performance in the case of big background noise, but also can reposition and track the object when the object is lost after severe occlusion.

关 键 词:目标跟踪 均值漂移 颜色直方图 遮挡 全局搜索 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象