车辆主动悬架优化设计与仿真分析  被引量:9

Optimization design and simulation analysis of vehicle active suspension

在线阅读下载全文

作  者:付涛[1] 王大镇[1] 弓清忠[1] 祁丽[1] 

机构地区:[1]集美大学机械与能源工程学院,福建厦门361021

出  处:《计算机工程与应用》2016年第6期253-257,263,共6页Computer Engineering and Applications

基  金:福建省产学研重大项目资助(No.2012H6016);福建省自然科学基金计划资助项目(No.2011J01321)

摘  要:基于混合粒子群优化(Hybrid Particle Swarm Optimization,HPSO)算法设计了一种以降低车身加速度(BA),悬架动行程(SWS)和轮胎动位移(DTD)为目标的车辆主动悬架线性最优控制器。建立了2自由度1/4车辆主动悬架动力学模型,运用混合粒子群优化算法对LQG控制器的权值矩阵进行优化求解,在Matlab/Simulink环境下,对不同工况下的车辆悬架进行了仿真分析。仿真结果表明,经过混合粒子群算法优化后的主动悬架在行驶平顺性和操纵稳定性上有所改善,并且优化后主动悬架性能指标BA,SWS和DTD的均方根值最大分别减少了22.56%,44.27%和19.75%。Based on hybrid particle swarm optimization, a linear optimal controller for vehicle active suspension is designed to reduce the Bodywork Acceleration(BA), Suspension Dynamic Schedule(SWS)and Tire Dynamic Deflection(DTD).Firstly, a 2-DOF dynamic model of a 1/4 vehicle active suspension is established. Then, the hybrid particle swarm algorithm is used to optimize suspension stiffness, suspension damping coefficient and weight matrix of LQG controller. Lastly, the model of different working condition is simulated and analysed under Matlab/Simulink environment. The simulation results illustrate that the riding comfort and handling stability of active suspension have been improved and the root mean square of BA, SWS and DTD is decreased by 22.56%, 44.27%, 19.75% after optimized by hybrid particle swarm.

关 键 词:混合粒子群算法 线性二次型(LQG)控制器 主动悬架 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象