检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《吉林大学学报(信息科学版)》2016年第1期47-53,共7页Journal of Jilin University(Information Science Edition)
基 金:国家自然科学基金重点资助项目(61034001)
摘 要:为估计汽车横摆角速度并提高估计器精度,采用BP(Back Propagation)神经网络的方法对汽车转向过程的横摆角速度进行估计。现实情况通常存在4种路面:干燥路面、沥青路面、积水路面和冰雪路面,若单纯训练一个网络难以涵盖4种不同的路面情况。为解决上述问题,提高网络估计器的精度,分别在4种路面工况下训练4个网络,构成一个网络组,再加入网络选择机制,根据路面情况选择对应的网络的输出值作为横摆角速度的估计值。通过AMESim与Matlab联合仿真,获得网络估计器残差并对估计情况进行分析和评价。该基于数据的方法与基于解析模型的估计方法相比,不依赖精确的模型,就能准确估计汽车横摆角速度。仿真结果表明,基于BP神经网络的方法对横摆角速度估计是可行的且偏差小,成本低,精度高。In order to estimate the vehicle yaw rate and increase the estimator accuracy,a method of BP( Back Propagation) neural network is adopted to estimate the vehicle yaw rate during the steering condition. There are four kinds of roads that are existing in reality: dry road,pitch road,watered road and ice road,and one neural network cannot include the condition of four kinds of different roads. To solve the problem and increase the precision of the network estimator,we have trained four neural networks respectively to form a network group. By adding a selecting module to the system,the estimation value of yaw rate with corresponding road friction coefficient can be picked out. We obtain the residuals of networks by co-simulation of AMESim and MATLAB.Finally,we evaluate and analyse the results of the estimation generating by the estimator. The method adopted is the data-based approach. Compared with the existing model-based method,it is independent of precise model and it can estimate the yaw rate precisely. Simulation results and analysis verified the viability and the precision of using BP neural networks to estimate vehicle yaw rate.
关 键 词:横摆角速度估计 BP神经网络 附着系数 AMESim与Matlab联合仿真
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249