检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油大学(北京)地球物理与信息工程学院,北京102249 [2]中国石油大学(北京)油气数据挖掘北京市重点实验室,北京102249 [3]中海油研究总院信息数据中心,北京100029
出 处:《计算机科学》2016年第2期254-258,共5页Computer Science
基 金:国家高新技术研究发展计划(2009AA062802);国家自然科学基金(60473125);中国石油(CNPC)石油科技中青年创新基金(05E7013);国家重大专项子课题(G5800-08-ZS-WX)资助
摘 要:中文文本特征词选取是文本处理的重要方面,对文本分类有重要影响。现有的文本特征提取方法存在生成特征向量维数高、依赖训练集、忽略低频关键词等不足。利用《同义词词林》计算词语之间的语义距离,通过聚类算法筛选类别的主题相关词,最后通过信息增益算法从主题相关词中选取特征词。以宏F值和微F值为评价指标,通过有效性实验和对比实验表明,该方法的文本特征选取效果优于其他经典算法。Feature extraction of Chinese documents is an important part in the document processing,and imposes great influence on the document classification.Pre-existing document feature extraction methods have many shortcomings,such as creating a feature vector of high dimensions,depending on training sets,ignoring low-frequency keywords,and so on.In this paper,the semantic distance between words was calculated based on the synonyms dictionary,and then theme related words of each classification were selected by the density clustering method,and finally the feature words were selected from the theme related words using the information gain algorithm.In order to validate the proposed method,one validation experiment and one comparison experiment were designed and the evaluation indexes including the macro-F value and the micro-F value were calculated.Experiment results show that the proposed document feature extraction method has better performance than other traditional algorithms.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222