检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学城市学院,浙江杭州310015 [2]浙江大学,浙江杭州310000
出 处:《电源技术》2016年第3期543-546,共4页Chinese Journal of Power Sources
基 金:浙江省公益项目(2015C33225);浙江省自然科学基金(LQ16F010004)
摘 要:根据18650型锂离子单体电池的特性分析,建立了电路等效模型和电化学模型相结合的电池模型,以实时在线辨识锂离子电池欧姆内阻为目标,利用无迹Kalman(UKF)滤波算法,实现了对电池欧姆内阻的在线辨识,开展了锂离子电池健康状况(SOH)估计实验,建立了适用于18650型锂离子电池的SOH估计模型。仿真结果显示,该模型同时考虑电池内阻在不同工况下的变化趋势和充放电电流大小等因素,为实现锂离子电池健康状况精确估计提供了较好的理论基础。The characteristics of the 18650-type lithium battery were analyzed. An improved battery model combined with the equivalent circuit model and the electrochemical model was established. The main efforts of our study were:Firstly, the Ohmic resistance of the battery model was identified online based on the Unscented Kalman Filtering(UKF) algorithm. Secondly, the estimation model of the State of Health(SOH) for the 18650-type battery was established. Thirdly, an improved battery SOH estimation method based on UKF algorithm was provided. The experimental results indicate that the new battery model considers the different-value of the battery internal resistance on the different working condition(like different voltage, current and temperature). Besides, our new estimation algorithm had practical value to the further study of filtering algorithm for other electrical vehicle systems.
关 键 词:18650锂离子电池 健康状况(SOH) UKF
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201