检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
出 处:《光电工程》2016年第3期58-65,共8页Opto-Electronic Engineering
基 金:国家自然科学基金资助项目(61104213;61573168);江苏省自然科学基金资助项目(BK2011146)
摘 要:针对目标跟踪在复杂场景中鲁棒性较差以及有效性较低的问题,基于在线检测跟踪框架提出一种基于回归的自适应多特征融合目标跟踪算法。对密集采样得到的各子图像块提取出多种特征分别建立目标表观模型,通过正则化最小二乘分类器得到各模型的响应,利用加权和准则融合各响应,通过求解岭回归方程自适应地在线更新各响应权重以增强局部判别力,得到精确而稳定的检测分数值,从而进行有效鲁棒地跟踪。实验结果表明,该算法在大多数复杂场景下其跟踪精度和鲁棒性优于现有的目标跟踪算法。To solve the problem of poor robustness and low effectiveness of target tracking in complex scenes, a target tracking algorithm based on adaptive multi-feature fusion in tracking-by-detection framework is proposed. Features are extracted from the sub-images extracted by dense sampling, and the target appearance models are established respectively. The response of each model is obtained with regularized least squares classifier. The final response is achieved by weighted sums of the responses, in which the weights are updated by solving a regression equation. It helps to obtain accurate and stable detection scores by enhancing local discrimination. Experimental results show that the algorithm outperforms other state-of-the-art tracking algorithms in tracking accuracy and robustness in most complex scenes.
关 键 词:目标跟踪 岭回归 多特征融合 正则化最小二乘分类器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7