检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑伦川
机构地区:[1]重庆科创职业学院信息工程学院,重庆402160
出 处:《现代电子技术》2016年第7期24-28,32,共6页Modern Electronics Technique
摘 要:针对云计算机资源管理过程中如何减少人工操作,达到资源自适应管理这一问题,提出了基于负载相似度的神经网络负载预测算法和基于混合分组编码的多目标遗传算法的资源管理策略。针对不同神经网络和不同规模物理节点,分别在Matlab和Cloud Sim环境下进行了仿真实验。实验结果表明,基于负载相似度的Elman神经网络负载预测算法适应云计算机系统的动态特点,可以有效提高资源负载预测的准确性;基于混合分组编码的多目标遗传算法的资源管理策略能在减少虚拟机迁移次数的同时优化物理机使用数量。For the problem of how to reduce the manual operation in the process of cloud computer resources management to achieve resource adaptive management,a resource management strategy of neural network load forecasting algorithm based on load similarity and multi-objective genetic algorithm based on hybrid grouping encoding is proposed. The simulation experiments for physical nodes of different scale and different neural networks were conducted in the environments of Matlab and Cloud Sim respectively. The experimental results show that the Elman neural network load forecasting algorithm based on load similarity adapts to the dynamic characteristics of cloud computer system,and can effectively improve the accuracy of resource load forecasting. The resource management strategy of multi-objective genetic algorithm based on hybrid grouping encoding can reduce the frequency of the virtual machine migration,and optimize the use quantity of physical machines.
分 类 号:TN711.34[电子电信—电路与系统] TM417[电气工程—电器]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38