检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学,重庆400065
出 处:《电信科学》2016年第3期53-59,共7页Telecommunications Science
基 金:国家自然科学基金资助项目(No.11502039);重庆市基础与前沿研究计划基金资助项目(No.cstc2015jcyj A40004);工业和信息化部软科学项目(No.2012-R-51);重庆邮电大学博士科研启动基金资助项目(No.A2015-41);重庆邮电大学青年科学基金资助项目(No.A2015-62)~~
摘 要:随着短距离无线通信技术的快速发展及应用,ISM(2.4 GHz)频段的电磁干扰问题日益凸现,而利用频谱预测来预先获知频段的占用信息,已成为解决设备间兼容共存问题的有效途径。在验证ISM频段时域频域相关性的基础上,提出了一种时频二维LMBP神经网络,并将其应用于ISM频段的频谱预测。通过仿真和理论分析得到了最佳的时频训练组合点(△t=5、△f=2),在神经网络输入向量N=9的条件下,该点的预测准确度可达95%,相比Markov算法和时域LMBP神经网络分别提高了9%和4%的预测精度,且具有更优的训练收敛时间。With the rapid development and application of short-range wireless communications technology, the electromagnetic interference of ISM(2.4 GHz)band has become more apparent. Using the spectral prediction algorithm to predict the information of spectrum occupancy has become an effective way to solve the problem of compatible coexistence between devices. On the basis of verifying the time-domain and frequency-domain correlation of ISM band, an LMBP neural network of time and frequency domain was proposed and applied in the spectral prediction of ISM band. Through simulations and theoretical analysis, the best training combination of time-frequency point(△t =5, △f =2) was obtained. This point improves 95% of the spectrum prediction accuracy under the conditions of the input vector N =9 of the neural network. It increased 9% and 4% prediction accuracy compared with Markov algorithm and time-domain LMBP neural network and it had a better convergence time of training.
关 键 词:ISM频段时频相关性 BP神经网络 时频二维LMBP神经网络 频谱预测精度
分 类 号:TN925[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30