检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学电气工程与自动化学院,福建福州350116
出 处:《电力系统保护与控制》2016年第7期39-46,共8页Power System Protection and Control
基 金:国家自然科学基金项目(51377023)~~
摘 要:短路电流峰值对低压系统选择性保护及其断路器可靠分断十分重要,迄今尚缺乏深入研究。利用短路故障早期检测技术,在仿真分析短路故障早期参数的基础上,采用灰度关联度,得出对短路电流峰值的主要影响因素,并采用极端学习机(ELM)实现短路电流峰值的预测。仿真结果表明,灰色关联度可有效辨识短路电流主要因素,降低了短路电流预测特征变量维数。基于短路故障早期检测及极端学习机的短路电流预测方法,具有鲁棒性强且精度高的特点,为低压选择性保护技术的实现奠定基础。The peak of short-circuit current is of great importance for selective protection of low-voltage distribution system and reliable breaking of circuit breaks. However, it is lack of intensive study now. Based on the early fault detection technology and the parameters analyzed by simulation, this paper concludes the main factors which influence the peak value by using grey correlation degree. Furthermore, the extreme learning machine(ELM) is used to forecast the peak value of fault current. Simulation results show that the grey correlation degree can identify the main factors of the short-circuit current effectively. And it can also reduce the dimensions of characteristic variable of short-circuit current. Finally, the short-circuit current prediction method based on the early fault detection and extreme learning machine shows strong robustness and high precision, which can lay the foundation for the realization of low-voltage selective protection technology.
关 键 词:低压配电系统 故障早期检测 短路电流峰值预测 灰色关联度 极端学习机
分 类 号:TM713[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222