检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱蔚恒[1] 印鉴[2] 邓玉辉[1] 龙舜[1] 邱诗定
机构地区:[1]暨南大学信息科学技术学院,广州510632 [2]中山大学信息科学与技术学院,广州510006
出 处:《计算机研究与发展》2016年第3期559-570,共12页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61472453;61272073;61401177;61572232;U1401256;U1501252);广东省自然科学基金项目(S2013020012865);广东省科技计划基金项目(2013B010401017)~~
摘 要:大数据时代多源、异构、海量的数据正逐渐成为各种应用的主流.多源异构不可避免地会使数据出现重复,同时庞大的数据量对重复检测的效率提出了极高的要求,传统技术在大数据环境下并不能很好地对高维数据进行重复检测,就此问题展开研究,分析了传统SNM类方法的不足,将重复问题概化为一类特殊的聚类问题,利用R-树建立了高效的索引,利用聚类簇的特性减少了在R-树叶子中比较的次数,利用重复检测的Apriori性质实现了对高维数据集并行处理.实验结果表明,提出的算法能有效地提高高维数据的重复检测效率.The big data era has huge quantity of heterogeneous data from multiple sources be widely used in various domains.Data from multiple sources and of various structures make data duplication inevitable.In addition,such a large amount of data generates an increasing demand for efficient duplicate detection algorithms. Traditional approaches have difficulties in dealing with high dimensional data in big data scenarios.This paper analyses the deficiency of traditional SNM(sorted neighbour method)methods and proposes a novel approach based on clustering.An efficient indexing mechanism is first created with the help of R-tree,which is a variant of B-tree for multi-dimensional space.The proposed algorithm reduces the comparisons needed by taking advantage of the characteristics of clusters and outperforms existing duplicate detection approaches such as SNM,DCS,and DCS++.Furthermore,based on the apriori property of duplicate detection,we develop a new algorithm which can generate the duplicate candidates in parallel manner of the projection of original dataset and then use them to reduce search space of high-dimensional data.Experimental results show that this parallel approach works efficiently when high-dimensional data is encountered.This significant performance improvement suggests that it is ideal for duplicate detection for high dimensional big data.
关 键 词:大数据 高维数据 数据挖掘 数据预处理 重复检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.83.171