强干扰下的无线传感器网络鲁棒性通信节点选择模型  被引量:11

Robust Communication Node Selection Model for Wireless Sensor Networks Under Strong Interference

在线阅读下载全文

作  者:宫玉荣[1] 

机构地区:[1]郑州成功财经学院,河南巩义451200

出  处:《科技通报》2016年第4期156-159,164,共5页Bulletin of Science and Technology

基  金:河南省2015年度科技发展计划项目;课题编号:152102210027

摘  要:无线传感器网络在强干扰环境下,通信节点受到干扰影响和能耗限制,导致节点之间的通信信道失衡,需要对无线传感器网络通信节点进行鲁棒性选择,提高网络通信的覆盖和均衡能力。传统方法中对无线传感器网络鲁棒性通信节点选择采用节点间互助转包轮换路由分发协议,由于邻居节点的自私性导致对节点通信的抗干扰性不强。提出一种基于自适应分层能量均衡的强干扰下的无线传感器网络鲁棒性通信节点选择模型。构建无线传感器网络的通信节点布局模型,然后进行通信节点的最优节点密度分布设计,基于自适应分层能量均衡方法实现对强干扰下的无线传感器网络鲁棒性通信节点选择模型改进。仿真实验结果表明,采用该模型进行强干扰下的无线传感器网络鲁棒性通信节点优化部署和选择,降低了数据传输丢包率和延迟,减少了计算开销,提高了网络的连通性和覆盖度,性能优越。Wireless sensor networks in the strong interference environment, communication nodes are affected by interference and energy consumption, resulting in the imbalance between the communication channels, the need for wireless sensor network communication nodes to make a robust choice, improve the coverage and balance ability. The traditional method of wireless sensor network robustness to communication nodes the nodes mutual subcontract alternate routing distribution protocol due to the neighbor node selfishness leads to node communication anti- jamming is not strong. A robust communication node selection model for wireless sensor networks based on adaptive hierarchical energy balance is proposed. The distribution model of communication nodes in wireless sensor network is constructed, and the optimal node density distribution is designed. Based on adaptive hierarchical energy balance method, the robust communication node selection model is improved. The simulation experiment results show that the model is used to optimize the deployment and selection of robust communication nodes in wireless sensor networks. It reduces the packet loss rate and delay, reduces the computation cost and improves the network connectivity and coverage.

关 键 词:无线传感器网络 节点 鲁棒性 通信 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象