检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州大学物理与光电.能源学部,江苏苏州215006
出 处:《光电技术应用》2016年第1期45-49,共5页Electro-Optic Technology Application
摘 要:当背景与目标颜色相近时,传统基于颜色直方图的粒子滤波跟踪算法容易被干扰发生错误跟踪。彩色二进制局部不变特征(CBLID)具有旋转、尺度缩放和光照不变性等特点,将CBLID特征应用到粒子滤波跟踪算法中,以提高跟踪算法的抗干扰能力。考虑到纹理少的目标的CBLID特征点较少,仅仅依据CBLID特征进行跟踪不稳定,提出一种结合CBLID特征与颜色直方图特征的粒子滤波跟踪算法。该算法依据颜色直方图的Bhattacharyya距离以及CBLID特征点匹配数目确定粒子的权值,并根据当前帧跟踪结果及CBLID目标模板中特征点匹配数来决定是否对目标颜色模板进行更新。实验结果表明,当目标出现遮挡或者背景颜色相近时,该方法能够有效地提高跟踪精度,同时它比基于SIFT特征的粒子滤波算法速度快。In traditional particle filter algorithm, the weight of each particle is based on color feature only andupdated by calculating the distance of Bhattacharyya, which may easily lead to error tracking when the object andthe background have similar color or the object is occluded. Colored binary local invariant descriptor(CBLID) fea-ture is highly discriminative, it can improve the performance of the algorithm effectively when the target is occludedor they have similar color. But using CBLID feature only is insufficient to describe small targets. A new method isproposed to handle with this situation, in which the target model is built by CBLID feature and color feature togeth-er. The color target model will be updated through the numbers of matching points between current frame and theCBLID target model. Experimental results show that the proposed method can effectively improve the tracking preci-sion when the object is occluded or under a background with similar color. Besides, it is faster than using scale in-variant feature transformation(SIFT) in particle filter algorithm.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222