检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学计算机学院,重庆400044 [2]重庆大学软件学院,重庆400044
出 处:《计算机应用》2016年第4期1066-1069,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61272399;61572090)~~
摘 要:虚拟机的正常运行是支撑云平台服务的重要条件,由于云平台下虚拟机存在数量规模大、运行环境随时间动态变化的特点,管理系统难以针对每个虚拟机进行训练数据采集以及统计模型的训练。为了提高在上述环境下异常检测系统的实时性和识别能力,提出基于改进k中心点聚类算法的检测域划分机制,在聚类迭代更新步骤上进行优化,以提升检测域划分的速度,并通过检测域策略的应用来提高虚拟机异常检测的效率和准确率。实验及分析表明,改进的聚类算法拥有更低的时间复杂度,采用检测域划分机制的检测方法在虚拟机异常检测中拥有更高的效率和准确率。The stable operation of virtual machine is an important support of cloud service. Because of the tremendous amount of virtual machine and their changing status,it is hard for management system to train classifier for each virtual machine individually. In order to improve the performance of real-time performance and detection ability,a new dividing mechanism based on modified k-medoids clustering algorithm for dividing virtual machine detection region was proposed,the iterate process of clustering was optimized to improve the speed of dividing detection region,and the efficiency and accuracy of anomaly detection were enhanced consequently by using this proposed detecting region strategy. Experiments and analysis show that the modified clustering algorithm has lower time complixity,the detection method with dividing detection region performs better than the original algorithm in efficiency and accuracy.
关 键 词:异常检测 云平台 大规模虚拟机 k中心点 检测域
分 类 号:TP302.8[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.185.23