检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王思睿[1] 薛云灿[1] 李彬[1] 邓立华[1] 顾菁[1]
出 处:《微处理机》2016年第2期82-85,共4页Microprocessors
基 金:中央高校基本科研基金(2013B08914);江苏省输配电装备技术重点实验室开放式基金(2011JSSPD13)
摘 要:结合历史发电量和气象数据分析了影响光伏系统发电功率的各项因素,针对传统光伏发电预测模型预测精度不高的问题,加入了电池板温度信息作为光伏发电预测模型的输入参考量;针对传统BP神经网络易陷入局部极值的缺陷,提出了基于改进学习率和权值的弹性自适应规则的BP神经网络。采用光伏监控系统历史发电量和气象数据建立了弹性自适应BP神经网络预测模型,对训练好的模型进行了测试和评估。预测结果表明,该预测方法较好地解决了传统BP算法易陷入局部极值的问题,提高了系统预测结果精度。Combined with historical power and weather data,all factors which influence the power generation of photovoltaic system are discussed,and the temperature information from the solar panels is added to the forecasting model as the reference input to solve the problems of low prediction accuracy of the traditional forecasting model. Aiming at the defects of the traditional BP neutral network into a local extreme value,this paper proposes the BP neutral network based on the improved learning rate and elastic adaptive rule. The BP neural network forecasting module of elastic adaptive method is trained by historical power and weather data of photovoltaic monitoring system. The trained module is tested and evaluated. The forecasted results show that the prediction method can effectively solve problems of the traditional BP algorithm into a local extreme value and improve the system precision of forecast results.
关 键 词:BP神经网络 预测模型 气象数据 电池板温度 弹性自适应 局部极值
分 类 号:TM7[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33