机构地区:[1]School of Environmental and Biological Engineering, Nanjing University of Science and Technology [2]Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University [3]Guangxi Gui-Ren-Tang Co., Ltd. [4]State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences
出 处:《Chinese Herbal Medicines》2016年第1期80-84,共5页中草药(英文版)
基 金:National High Technology Research and Development Program of China(863 Program)(2014AA022208);National Natural Science Foundation of China(31170131 and 31070312);Jiangsu Qinglan Project
摘 要:Objective To isolate and identify the bioactive phytochemicals from the leaves of Camellia nitidissima. Methods The chemical constituents were isolated and purified by repeated silica gel, Sephadex LH-20, MCI gel columns, recrystallization, and semi-preparative HPLC techniques. The chemicl structures of these compounds were identified on the basis of spectral data including NMR and MS. Then quorum sensing inhibition (QSI) activities of these compounds were tested using Chromobacterium violaceum CV026 as the bioindicator strain. The antitumor activities of these compounds were measured using SGC7901 as cell proliferation and cytotoxicity. Results cx-Spinasteryl-I^-D-glucopyranoside (1), stigmasta-7,22-diene-3-O-[c^-L-arabinopyranosyl (1 -2)]-β-D-galactopyranoside (2), kaempferol 3-O-[2-O-(trans-p-coumaroyl)-3-O-α -D-glucopyranosyl]-α-D-glucopyranoside (3), aromadendrin (4), catechin (5), phlorizin 4'-O-β-D-glucopyranoside (6), (3R,6R,7Lg-3-hydroxy-4,7-megastigmadien- 9-one (7), dodecanoic acid (8), 3α-acetoxy-20-1upanol (9), and 3β,6α- trihydroxyolean- 7-one (1 0) were successively isolated from the leaves of C. nitidissima. Unfortunately, these compounds had no QSI activity. Based on Cell Counting Kit-8 (CCK-8) assay, compound 10 showed the best anti-tumor activity or all compounds (ICs0 = 91.7 μg/mL). Conclusion Apart from compounds 4 and 5, other eight compounds are reported in this plant for the first time. All compounds show no QSI activity, compound 10 shows potential cytotoxic activity on SGC7901 cells in vitro.Objective To isolate and identify the bioactive phytochemicals from the leaves of Camellia nitidissima. Methods The chemical constituents were isolated and purified by repeated silica gel, Sephadex LH-20, MCI gel columns, recrystallization, and semi-preparative HPLC techniques. The chemicl structures of these compounds were identified on the basis of spectral data including NMR and MS. Then quorum sensing inhibition (QSI) activities of these compounds were tested using Chromobacterium violaceum CV026 as the bioindicator strain. The antitumor activities of these compounds were measured using SGC7901 as cell proliferation and cytotoxicity. Results cx-Spinasteryl-I^-D-glucopyranoside (1), stigmasta-7,22-diene-3-O-[c^-L-arabinopyranosyl (1 -2)]-β-D-galactopyranoside (2), kaempferol 3-O-[2-O-(trans-p-coumaroyl)-3-O-α -D-glucopyranosyl]-α-D-glucopyranoside (3), aromadendrin (4), catechin (5), phlorizin 4'-O-β-D-glucopyranoside (6), (3R,6R,7Lg-3-hydroxy-4,7-megastigmadien- 9-one (7), dodecanoic acid (8), 3α-acetoxy-20-1upanol (9), and 3β,6α- trihydroxyolean- 7-one (1 0) were successively isolated from the leaves of C. nitidissima. Unfortunately, these compounds had no QSI activity. Based on Cell Counting Kit-8 (CCK-8) assay, compound 10 showed the best anti-tumor activity or all compounds (ICs0 = 91.7 μg/mL). Conclusion Apart from compounds 4 and 5, other eight compounds are reported in this plant for the first time. All compounds show no QSI activity, compound 10 shows potential cytotoxic activity on SGC7901 cells in vitro.
关 键 词:ANTITUMOR Camellia nitidissima C-27 steroidal saponins FLAVONOIDS quorum sensinginhibitors SGC7901 triterpenes
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...