检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhenzhou CHENG Changyuan QIN Fengqiu WANG Hao HE Keisuke GODA
机构地区:[1]Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan [2]School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China [3]Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China [4]Department of Electrical Engineering, University of California, Los Angeles 90095, USA [5]Japan Science and Technology Agency, Tokyo 102-0076, Japan
出 处:《Frontiers of Optoelectronics》2016年第2期259-269,共11页光电子前沿(英文版)
摘 要:Mid-infrared (mid-IR) (2-20 μm) photonics has numerous chemical and biologic "fingerprint" sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research develop- ments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photo- dynamic therapy, and florescence imaging are also reviewed.Mid-infrared (mid-IR) (2-20 μm) photonics has numerous chemical and biologic "fingerprint" sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research develop- ments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photo- dynamic therapy, and florescence imaging are also reviewed.
关 键 词:mid-infrared (mid-IR) GRAPHENE lasers photodetectors optical sensing and sensors PHOTODYNAMICTHERAPY spectroscopy fluorescence and luminescence
分 类 号:TN201[电子电信—物理电子学] TS207.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.194.164