检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾丹丹[1] 白先勇[2] 强振平[3] 李强[1] 季凯帆[1]
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]中国科学院空间科学与应用研究中心,北京100190 [3]西南林业大学计算机与信息学院,昆明650224
出 处:《科学通报》2016年第11期1255-1264,共10页Chinese Science Bulletin
基 金:国家重点基础研究发展计划(2011CB811401);空间科学先导专项(XDA04061002);国家自然科学基金(11303011;11263004;11463003)资助
摘 要:提出了一种基于混合高斯模型的日冕物质抛射(CME)探测方法.基本思想是利用自适应的混合高斯模型建立较为稳定的日心极坐标下的日冕图像的动态背景,从而探测作为前景变化的CME.采用SOHO卫星上的大视角分光日冕仪(LASCO)观测的2组日冕序列图像作为研究对象,研究的内容主要包括日冕序列图像的预处理、CME的探测、自适应混合高斯背景差分法与其他多种CME探测方法的对比3个方面.实验结果表明,自适应混合高斯背景差分法探测CME是可行的,它能探测到CDAW手动目录列出的全部CME,还能探测到CDAW探测不到的强度弱和张角小的CME,而且探测数量也多于CACTus和SEEDS探测算法.A new automatic detection algorithm extracted solar moving target coronal mass ejection(CME) is proposed in this paper. The CME releases huge quantities of matter and electromagnetic radiation solar-terrestrial space from the Sun. When the ejection is directed toward the Earth, it even effects the life of human being. Automatic detecting the CME for observed image is very useful for studying those solar activities. The CME detection can be considered as detection and tracing moving object in a complicated background. Therefore, according to the gradient characteristic of the background and the demand of real-time processing, we developed a dynamic new background estimation algorithm that based on the Adaptive traditional Gaussian Mixture Model. An expectation-maximization algorithm is applied to improve the initialization of the model, and a learning rate for each pixel in the sequence of image is adaptively for updating the background of coronal sequential images. The CME can be detected as a foreground object after subtracting the background that is estimated by the adaptive Mixture Gaussian Models from the original image extraction. The processing is under the polar coordinate of heliocentric. Two image sequences of coronal observed by the Large Angle Spectroscopic Coronagraph(LASCO) in the SOHO satellite were used. The paper gives the details of the preprocessing of the image sequences of coronal, detecting of the CME and the results comparison between the proposed and other CME automatic detection methods. The detection rate, false alarm rate, and detection of the amount of the CME are discussed. The experimental results show that the method is practicable and effective for detecting the CME. Compared with the manual detection of moving target detection, such as CDAW, the automatic CME detection method is more rapid and powerful. The method not only can detect all of the CMEs listed on the CDAW CME catalog, but also the CME with weaker intensity and smaller angle. Furthermore, it has better performan
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.212.163