基于私有云和改进粒子群算法的约束优化求解  被引量:4

Constrained optimization problems solving based on private cloud and improved particle swarm optimization

在线阅读下载全文

作  者:张永强[1,2] 徐宗昌[1] 呼凯凯[1] 胡春阳[1] 

机构地区:[1]装甲兵工程学院技术保障工程系,北京100072 [2]海军航空兵学院,辽宁葫芦岛125000

出  处:《系统工程与电子技术》2016年第5期1086-1092,共7页Systems Engineering and Electronics

摘  要:为提高约束优化模型的求解准确度和运算速度,针对粒子群算法及其计算方法进行了改进。引入多样化机制避免算法陷入局部最优的危险:创建多个子群将决策空间划分为多个搜索子空间,多子群独立搜索以保证群间解的多样化;用量子粒子代替普通粒子,为其添加服从球状分布的伴随粒子来提高群内解的多样化。多样化的引入增加了计算量和计算复杂度,利用并行计算提高算法运行速度:分析了改进粒子群算法并行计算的方法,在私有云计算平台上编写了基于MapReduce的并行求解流程。实验结果表明,本文方法具有较高准确度,算法的稳定性也较好,运算速度可成倍提高。In order to solve constrained optimization problems with higher accuracy and faster computing speed, several improvements are raised on particle swarm optimization(PSO) and its computing method. Solu- tions' diversification mechanism is applied in PSO to improve its global optimization ability., decision space is di- vided into multiple searching subspaces, while multi-subswarms are created according to those searching sub- spaces, and multi-subswarms are searched independently to get solutions' diversification among subswarms; or- dinary particles is replaced by quantum particles in PSO, while associated particles that follow globular distribu- tion is vested in each quantum particle, which could improve solutions' diversification in subswarms. Running speed of the improved PSO is increased via parallel computing: Parallel computing flow of the improved PSO is analyzed based on the private cloud platform and the algorithm for the flow is programmed based on MapRe- duce. The experimental results show that the proposed method has higher accuracy solutions and stability, and the performance and computing speed is exponentially improved.

关 键 词:约束优化 粒子群算法 私有云计算平台 并行求解 多样化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] E911[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象