检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学计算机科学与技术学院,福建厦门361021
出 处:《计算机应用研究》2016年第5期1327-1334,共8页Application Research of Computers
基 金:国家自然科学基金资助项目(61305058;61300139;61102163);厦门科技计划基金资助项目(3505Z20133027);华侨大学科研基金资助项目(11Y0274;12HJY18);中央高校基本科研基金资助项目(11J0263)
摘 要:贝叶斯网络(BN)应用于分类应用时对目标变量预测有直接贡献的局部模型称做一般贝叶斯网络分类器(GBNC)。推导GBNC的传统途径是先学习完整的BN,而现有推导BN结构的算法限制了应用规模。为了避免学习全局BN,提出仅执行局部搜索的结构学习算法IPC-GBNC,它以目标变量节点为中心执行广度优先搜索,且将搜索深度控制在不超过两层。理论上可证明算法IPC-GBNC是正确的,而基于仿真和真实数据的实验进一步验证了其学习效果和效率的优势:a)可输出和执行全局搜索的PC算法相同甚至更高质量的结构;b)较全局搜索消耗少得多的计算量;c)同时实现了降维(类似决策树学习算法)。相比于绝大多数经典分类器,GBNC的分类性能相当,但兼具直观、紧凑表达和强大推理的能力(且支持不完整观测值)。General Bayesian network classifier( GBNC) was the effective local section of the Bayesian network( BN) facing classification problem. Conventionally,it had to learn the global BN first,and existing structure learning algorithm imposed restriction on possible problem scale. The paper developed an algorithm called IPC-GBNC for the exact recovery of GBNC with only local search. It conducted a breadth-first search with depth no more than 2 given the class node as the center. It proved its soundness,and experiments on synthetic and UCI real-world datasets demonstrate the merits of IPC-GBNC over classical PC algorithm which conducted global search: a) it produces same as or even higher quality of structure than PC,b) it saves considerable computation over PC,and c) effective dimension reduction is realized. As compared with state-of-the-art classifiers,GBNC not only performs as well on prediction,but inherits merits from being graphical model,like compact representation and powerful inference ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.164.249