检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院遥感与数字地球研究所,北京100101
出 处:《计算机应用研究》2016年第5期1562-1565,共4页Application Research of Computers
基 金:国家"863"计划资助项目(2012AA12A304;2013AA12A301)
摘 要:遥感影像配准中,由于光照、成像角度、几何变形等因素的影响,无论采用何种配准方法,总会产生误匹配点,因此误匹配点检测也是一个非常重要的步骤。针对常用RANSAC(random sample consensus)方法不稳定、无法准确检测分布不均匀匹配点的缺点,提出了分组排序采样一致性(group sorted cample consensus,GSSAC)方法来提高误匹配点检测的稳定性和精度。分组排序采样方法首先将匹配点分为若干组,在每组内计算匹配点的误差并排序,然后在每组中分别采样若干个匹配点组成估算模型参数需要的匹配点。实验结果表明,GSSAC方法可以稳定地获得高精度的检测结果。Given the influences of illumination, imaging angle and geometric distortion, among others, false matching points still occur in all image matching algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. RANSAC was typically used to detection. However, RANSAC couldn' t accurately detect unevenly distribu- ted matching points and the result was unstable. To overcome these disadvantages and improve accuracy and stability, this paper proposed GSSAC method. Group sorted sample strategy first divided all matching points into several groups. Then,it sorted the matching points in each group. Finally, one or more matching points were sampled based on their orders for each group. These matching points were formed by the minimum number of points required to compute model parameters. The experiments show that the stability and accuracy of GSSAC are better compared with other methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

