一种L-M优化BP网络的茶叶茶梗分类方法  被引量:2

A Tea and Tea-stalk Classification Method of L-M Optimized BP Network

在线阅读下载全文

作  者:吴哲[1] 刘孝星 郑力新[1] 周凯汀[2] 

机构地区:[1]华侨大学工学院,福建泉州362021 [2]华侨大学信息科学与工程学院,福建厦门361021

出  处:《计算机技术与发展》2016年第4期200-204,共5页Computer Technology and Development

基  金:福建省科技新平台建设项目(2013H2002);泉州市开发项目(2011G74)

摘  要:传统的茶叶茶梗分选方法在特征选取方面存在着样本颜色特征提取单一的问题,以及现有的茶叶茶梗分类器普遍存在分类精度低、耗费时间长等问题。针对CCD相机采集的茶叶茶梗的数字图像,首先经过二值化、开运算、闭运算、样本图像去噪、图像分割等预处理过程,再根据茶叶茶梗样本形态学特征的差异,提取出圆形度、矩形度、延伸率、Hu二阶不变矩、最大内切圆与其面积比等5类区分度大、独立性好的特征,作为BP神经网络分类器的输入向量,并采用L-M(LevenbergMarquardt)学习算法对传统的BP神经网络分类器进行优化,用于茶叶茶梗的分类。实验和仿真结果表明,经过L-M算法优化的BP网络分类器对茶叶茶梗样本的分类精度高达95%,且耗时相对较少,是一种有效的茶叶茶梗分类方法。Traditional tea and tea- stalk sorting method exists problems that color feature extraction for sample is single in feature extraction aspect and general classifier has low precision and large time consuming. In term of digital image of tea and tea stems collected by CCD camera,according to different shape features between them,firstly after binarization,open and close operation,sample image denoising,image segmentation and other pre- processing process,it extracts circularity,rectangularity,extensibility,Hu second- order moment invariants,and the ratio of maximum inscribed circle and its area,etc in this paper,which has great distinction and independence,as the input vector of BP( Back- Propagation) neural network. It also applies L- M ( Levenberg- Marquardt) learning algorithm to optimize the traditional BP neural network for the classification of tea and tea stalk. Experiment and simulation results proves that the BP network classifier optimized by L- M algorithm is as high as 98% on classification accuracy for tea and tea- stalk,and has relatively few time-consuming. It is an effective classification method of tea and tea- stalk.

关 键 词:形态学特征 L-M学习算法 BP网络 茶叶茶梗分类 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象