基于改进万有引力优化的LSSVM模型在标签缺陷检测中的应用  被引量:2

LSSVM model optimized by improved gravitation search algorithm and its application on label defects detecting

在线阅读下载全文

作  者:庄葛巍[1] 张晓颖[1] 张维平 高大智 

机构地区:[1]国网上海市电力公司电力科学研究院,上海200051 [2]河北海纳电测仪器股份有限公司,河北秦皇岛066004

出  处:《电测与仪表》2016年第7期89-94,共6页Electrical Measurement & Instrumentation

摘  要:针对最小二乘支持向量机(LSSVM)在缺陷检测过程中的模型参数选择问题,提出了一种改进的万有引力搜索算法(IGSA)对模型参数进行优化,该算法有效地克服了标准GSA易陷入局部最优解且优化精度不高的缺点,显著提高了原算法中物体的探索能力与开发能力。通过利用UCI数据库的数据进行分类验证,相比交叉验证、标准GSA、遗传和粒子群优化的LSSVM,IGSA-LSSVM分类模型有效提高了分类正确率和模型的泛化能力。最后,把该模型应用于标签缺陷自动检测中,取得了良好的效果。In the light of the problems existed in selecting the parameters of LSSVM model in the process of defect detection,the Improved Gravitational Search Algorithm( IGSA) is brought in and applied to optimize the model parameters of LSSVM. The algorithm overcomes the shortcoming of standard GSA that is easy to fall into local optimum and has low accuracy and effectively improves the exploration ability and development ability of GSA. Experiments are carried out classification validation on the data sets from the UCI database. Compared with cross-validation,standard GSA,LSSVM of genetic algorithm and particle swarm optimization,the classification model of IGSA-LSSVM has the better classification accuracy and generalization ability. Finally,this model is applied to the label defect automatic detection,and has obtained a good result.

关 键 词:万有引力搜索算法 最小二乘支持向量机 分类模型 缺陷检测 

分 类 号:TM93[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象