检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张峥[1] 魏彪[1] 汤戈[1] 冯鹏[1] 吴德操[1] 刘娟[1] 唐媛[1] 熊双飞
出 处:《激光杂志》2016年第4期21-24,共4页Laser Journal
基 金:四川省科技支撑计划资助项目(2012SZ0111);重庆市研究生科研创新项目(CYS14029)
摘 要:针对紫外-可见光谱法水质COD检测在线、实时性的测量要求,研究了一种基于主成分分析(PCA)联合粒子群优化极限学习机(PSO-ELM)预测模型,借以预测水质COD检测数据。通过采用PCA对水质COD检测的光谱数据进行降维处理,提取其特征信息,消除向量相关性并送入PSO-ELM模型中进行建模及预测。研究结果表明,基于PCA联合PSO-ELM进行紫外-可见光谱法水质COD检测的预测模型研究,不仅预测精度较单纯的ELM模型提高了近10倍,而且相对于PSO-ELM模型的预测效率(运行时间)提升了一个数量级,这为紫外-可见光谱法水质COD在线、实时性检测创造了条件。According to the determination of water COD by using UV-Visible spectroscopy's requirements of online and real-time,this paper studied a prediction model based on principal component analysis( PCA) combined particle swarm optimization extreme learning machine( PSO-ELM) to predict water COD detection data. The model uses PCA to reduce the dimension of water's spectral data,this process could extract the data's feature information and eliminate vector correlation.After that,the data would be used for modeling and prediction by the PSO-ELM prediction model.The research results show that the prediction model based on PCA combined PSO-ELM's prediction accuracy has been proved almost 10 times than the prediction model based on ELM,and the prediction effect( run time) has been proved by one order of magnitude than the prediction model based on PSO-ELM,so these create the conditions for the determination of water COD by using UV-Visible spectroscopy online and real-time.
关 键 词:紫外-可见光谱法 水质COD检测 预测模型 PCA PSO-ELM
分 类 号:TN212[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28