检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大同大学煤炭工程学院,山西省大同市037003 [2]中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏省徐州市221008
出 处:《中国煤炭》2016年第4期48-52,共5页China Coal
基 金:国家自然科学基金项目(50874103);山西省软科学研究计划项目(2014041068-4)
摘 要:为了更合理有效地解决煤矿冲击地压危险性预测问题,引入主成分分析法对广义回归神经网络的输入样本进行信息压缩,得到冲击地压危险性影响因素的主成分因子,构建BPNN、GRNN、PCA—BP、PCA—GRNN 4种神经网络模型。预测结果表明所建PCA—GRNN模型较之其它3种模型整体工作性能优势明显,具有很好的预测能力和泛化能力,能较好解释冲击地压与各影响因素间的关系。In order to more reasonably and effectively solve the risk prediction problem of rock burst in coal mine,the PCA(Principal Component Analysis) was introduced to compress the information from input samples of the GRNN(Generalized Regression Neural Network),and find the principal component of rock burst risk influencing factors,four neural network models were built,which included BPNN,GRNN,PCA-BP and PCA-GRNN.The prediction results indicated that the PCA-GRNN model showed more excellent network performances and higher prediction accuracy and generalization ability than the other three models,which was able to analyze preferably the relationship between the rock burst and each influencing factor.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117