检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:昌继海[1] 张宇航[1] 张俊[1] 关振群[1]
机构地区:[1]大连理工大学工业装备结构分析国家重点实验室,工程力学系,大连116023
出 处:《计算力学学报》2016年第2期202-208,230,共8页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(11272074);国家科技重大专项(2011ZX02403)资助项目
摘 要:针对二维/三维混合网格,提出基于点球弹簧修匀法的并行网格变形算法。按特定模板将混合网格中的非三角形/四面体单元分解成三角形/四面体单元。针对每个内部节点及其相邻节点建立相应的子弹簧系统,并通过增加Ball-Vertex弹簧避免弹簧系统的塌陷问题。由于点球弹簧法在计算中逐点对网格内部节点进行计算,在计算过程中具有良好的弱耦合性质,因此有利于算法并行化。在并行化时仅需对网格进行虚拟分区操作,不必进行复杂的几何分区操作,同时避免了混合网格不同单元之间的兼容性问题。该方法适用于具有复杂外形的大规模混合网格的变形问题,能够显著提高网格变形的效率,同时具有良好的适应性。This paper presents a parallel mesh deformation method for hybrid mesh, based on Vertex-Ball Spring Smoothing(VerBSS). The hybrid mesh' s non-triangle/non-tetrahedron elements were decom- posed into the triangle/tetrahedron elements in the specific template. For every internal node and its surrounding nodes, a corresponding sub-spring system was established. The spring system's subsidence problem was avoided by adding Ball-Vertex springs. One by one, all internal nodes were calculated. Its weak coupling is good for the parallelization of solving process. It only needs to section the virtual mesh in the process of parallelization. The complex geometric partitioning and different types of elements' incompatibility can be avoided in this method. For large-scale complex geometries, this method can significantly improve deformation efficiency and has a good adaptability.
关 键 词:混合网格 网格变形 Ball—Vertex弹簧 点球弹簧修匀法 并行化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43