检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机应用》2016年第5期1439-1444,1468,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(61473138;61104092;61134007);江苏省自然科学基金资助项目(BK20151130);江苏省六大人才高峰项目(2015-DZXX-011)~~
摘 要:针对由一阶自主体和二阶自主体构成的异构多自主体系统的静态群一致性问题,分别提出了在固定连接拓扑和切换连接拓扑结构下的静态群一致性算法。通过构造Lyapunov-Krasovskii函数,得到了系统在具有相同时变通信时延的群一致性算法作用下渐近收敛群一致的充分条件,并以线性矩阵不等式表示。最后,仿真结果表明,所提算法在满足一定条件下能使时延异构多自主体系统渐近收敛群一致。Concerning the stationary group consensus problem for the heterogeneous multi-Agent systems,which are composed of first-order Agents and second-order Agents,two stationary group consensus protocols were proposed under fixed interconnection topology and switching interconnection topologies respectively. By constructing Lyapunov-Krasovskii functions,the sufficient conditions,which are formulated as linear matrix inequalities,were obtained for the system converging to the group consensus asymptotically under the group consensus algorithm with identical time-varying communication delay. Finally,the simulation results show that the heterogeneous multi-Agent systems with time delay converg to the group consensus asymptotically under certain conditions.
关 键 词:异构多自主体系统 群一致性 时变通信时延 切换拓扑
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143