检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chang Jing LI Quan Yuan CHEN
机构地区:[1]School of Mathematical Sciences, Shandong Normal University [2]College of Information, Jingdezhen Ceramic Institute
出 处:《Acta Mathematica Sinica,English Series》2016年第6期745-752,共8页数学学报(英文版)
基 金:Supported by Natural Science Foundation of Shandong Province,China(Grant No.ZR2015Item PA010);National Natural Science Foundation of China(Grant Nos.11526123 and 11401273)
摘 要:Let R be a unital *-ring with the unit I. Assume that R contains a symmetric idempotent P which satisfies ARP= 0 implies A = 0 and AR(I - P) = 0 implies A = 0. In this paper, it is shown that a surjective map Ф: R →R is strong skew commutativity preserving (that is, satisfies Ф(A)Ф(B) - Ф(B)Ф(A)* : AB- BA* for all A, B ∈R) if and only if there exist a map f : R → ZSz(R) and an element Z ∈ ZS(R) with Z^2 =I such that Ф(A) =ZA + f(A) for all A ∈ R, where ZS(R) is the symmetric center of R. As applications, the strong skew commutativity preserving maps on unital prime *-rings and von Neumann algebras with no central summands of type I1 are characterized.Let R be a unital *-ring with the unit I. Assume that R contains a symmetric idempotent P which satisfies ARP= 0 implies A = 0 and AR(I - P) = 0 implies A = 0. In this paper, it is shown that a surjective map Ф: R →R is strong skew commutativity preserving (that is, satisfies Ф(A)Ф(B) - Ф(B)Ф(A)* : AB- BA* for all A, B ∈R) if and only if there exist a map f : R → ZSz(R) and an element Z ∈ ZS(R) with Z^2 =I such that Ф(A) =ZA + f(A) for all A ∈ R, where ZS(R) is the symmetric center of R. As applications, the strong skew commutativity preserving maps on unital prime *-rings and von Neumann algebras with no central summands of type I1 are characterized.
关 键 词:Strong skew commutativity preserving von Neumann algebras prime rings
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49