检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李琳[1,2] 应时[1,2] 赵翀[1,2] 董波[1,2]
机构地区:[1]武汉大学软件工程国家重点实验室,湖北武汉430072 [2]武汉大学计算机学院,湖北武汉430072
出 处:《电子学报》2016年第1期123-129,共7页Acta Electronica Sinica
基 金:国家自然科学基金(No.61373038;No.61070012);国家863高技术研究发展计划(No.2012AA011204-01)
摘 要:面向服务软件的部署优化问题是典型的NP难题.本文构建了基于性能改善的软件部署优化模型,设计了一种蚁群优化算法ACO-DO进行近似最优解的快速求解.该算法通过设计基于部署优化问题的启发式、改进部署方案的构建顺序、增加局部搜索过程实现蚁群算法求解效率的提升.通过不同规模的实例实验,验证了ACO-DO算法能够取得比现有的混合整数线性规划算法、蚁群算法和遗传算法更好的性能.The deployment optimization of service-oriented software is well known to be NP hard. In this paper,a software deployment optimization model is built for improving the performance of service-oriented software,and an Ant Colony Algorithm for Deployment Optimization( ACO-DO) is designed to solve it so that the near-optimal solutions can be obtained quickly. The algorithm improves ant colony algorithm by designing a heuristic based on the considered problem,optimizing the orders of constructing deployment solutions and adding a local search procedure. A series of instances with different sizes are tested and analyzed. The experimental results showthat the designed ACO-DO algorithm performs better than the existing Mixed Integer Linear Programming,ant colony and genetic algorithms.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.100.166