基于局部约束编码的稀疏保持投影降维识别方法研究  被引量:1

Sparsity Preserving Projections Based on Locality Constrained Coding with Applications for Targets Recognition

在线阅读下载全文

作  者:张静[1] 杨智勇[2] 王国宏[3] 林洪文[1] 刘晓娣[1] 

机构地区:[1]海军航空工程学院电子信息工程系,山东烟台264001 [2]海军航空工程学院7系,山东烟台264001 [3]海军航空工程学院信息融合研究所,山东烟台264001

出  处:《电子学报》2016年第3期658-664,共7页Acta Electronica Sinica

基  金:国家自然科学基金(No.61102167;No.61302008;No.61179016;No.61102165)

摘  要:稀疏表示技术的引入可有效解决降维处理对图参数的依赖,但这类降维方法不能同时兼顾稀疏重构和样本数据的邻近性问题.针对该问题,本文提出了一种基于局部约束编码的稀疏保持投影降维识别方法.通过稀疏表示分类模型构建了图边权矩阵,引入局部约束因子设计了降维投影模型,推导降维求解过程,分析了本文方法与SPP(Sparse Preserving Projections)和SLPP(Soft Locality Preserving Projections)方法之间的共性和区别,最后给出了识别算法流程.采用人脸图像数据集和高分辨SAR(Synthetic Aperture Radar)图像数据集对算法的有效性进行仿真验证,由于考虑了数据间的邻近性,本文方法较传统方法可获得更好的识别性能.Constructing graph by sparse representation( SP) can reduce the dimensionality reduction( DR) w hich relies on neighborhood parameter selection. How ever,these DR algorithms are usually unable to take sparse reconstruction into consideration w hile preserving local data structure. This paper presents a sparsity preserving projections based on localityconstrained coding( LCC-SPP) algorithm. Firstly,an"adjacent"w eight matrix of dataset is constructed by sparse representation based classification( SRC). Then,a locality adaptor is introduced and the dimension reduction is modeled. We derive the solution of objective function. The similarities and differences are presented w ith sparse preserving projections( SPP)and soft locality preserving projections( SLPP),respectively. At last,the recognition flow is given. We conduct experiments on databases designed for face and synthetic aperture radar( SAR) images recognition. Considering the data locality,the proposed method has better recognition performance than SPP and SLPP.

关 键 词:目标识别 维数约简 稀疏表示 局部约束编码 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象