检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学系统工程研究所
出 处:《中国图象图形学报》2016年第5期544-555,共12页Journal of Image and Graphics
基 金:国家自然科学基金项目(61071217);江苏省科技计划基金项目(BK20141216)~~
摘 要:目的当前,目标跟踪问题常常会通过在线学习、检测的方法来解决。针对在线学习过程中,分类器训练需要花费大量时间以提高其识别准确率的问题,提出使用Adaboost算法级联弱分类器,在训练一定帧数后仅进行检测的方法来达到实时和准确的折中。方法首先针对跟踪问题简化了haar特征,以降低特征计算量。同时考虑到经典的Adaboost算法可能并不适合跟踪过程中存在的正负样本不均衡问题,提出在样本权重更新公式中引入一个新的调整因子项并且结合代价敏感学习来提高目标识别率的方法。最终给出使用简化的haar特征作为描述子,改进的代价敏感Adaboost作为分类器的目标跟踪算法。结果对20组视频进行跟踪实验,本文算法的平均代表准确率高于压缩跟踪算法约26%,高于原始代价敏感算法约11%;本文算法的视频处理平均帧率高于压缩跟踪算法约38%。结论本文提出的新代价敏感Adaboost算法对目标的识别、跟踪具有较高的准确率及较快的处理速度,并具有一定的抗干扰能力。特别对人等非刚性目标能够进行较好跟踪。Objective Visual tracking is one of the most active computer vision research topics because of its wide range of applications. Currently, target tracking problems are often solved through online learning and detection methods. A tracking task can be considered a binary classification problem solved using online learning method. However, in the process of online learning, the classifier training takes a considerable amount of time to improve its recognition accuracy. In this study, a method using the Adaboost algorithm is proposed to solve this problem. The algorithm initially trains weak classifiers in a certain number of beginning frames and will subsequently perform only as a detector without training to address the issues related to real time and accuracy. Method The Haar feature needs to be simplified because its computational cost remains a burden for real-time tracking. Thus, we remove the Haar orientation to facilitate calculation. Positive samples, i. e. , samples containing the target, are always the minority in tracking; as a result, the training samples are imbalanced. Accordingly, the algorithm needs to focus more on the positive targets to achieve higher detection rate. The equal treatment of false positives and false negatives by Adaboost may no longer be appropriate. In this case, we choose a cost-sensitive Adaboost to achieve higher detection rate for the positives. Furthermore, given that misclassified samples appear more often during a scenario because of the complex environment in visual tracking, we add a new parameter in the sample weight-updating formula of the cost-sensitive Adaboost to provide more weight to the misclassified samples, which consequently will be given more focus by the classifier. Finally, we propose a tracking method based on the simplified Haar feature as de- scriptor and the improved cost-sensitive Adaboost as classifier with online learning strategy. Result In our experiments, we compared our method with two state-of-the-art algorithms and the original cost-sensitive me
关 键 词:目标跟踪 代价敏感Adaboost算法 简化haar特征 调整权重因子项 在线学习 非刚性目标
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145