基于NSCT域二次模糊相关性的运动模糊置换混叠图像盲分离  

Blind Separation of Permuted Alias Image with Motion Blurred Using Double Blur Correlation Based on NSCT Domain

在线阅读下载全文

作  者:段新涛[1,2] 王婧娟[1,2] 范晓艳[1] 

机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]河南省高校"计算智能与数据挖掘"工程技术研究中心,河南新乡453007

出  处:《小型微型计算机系统》2016年第5期1057-1061,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(U1204606)资助;河南省科技攻关项目(142102210565)资助

摘  要:针对一类运动模糊置换混叠图像盲分离问题,提出一种基于NSCT域的二次模糊相关性的盲分离算法.首先,对置换混叠图像进行运动模糊,把原图像与相应的运动模糊图像分别在NSCT域上进行稀疏分解,得到各自的低频子带系数和各带通方向子带系数;其次,利用系数的冗余特性求其和图像;然后,对和图像分块,估计各对应子块的相关系数,对其采用阈值化操作分离出置换图像.实验结果表明,采用本算法在置换图像的运动模糊方向、模糊度、大小、位置和个数未知情况下对运动模糊置换混叠图像实现了有效的分离效果,并且对置换图像的正确分离率高于二次模糊相关性置换混叠图像盲分离和小波变换二次模糊相关性盲分离方法.Focused on the issue that motion blurred permuted alias image blind separation, an algorithm using double blur correlation blind separation based on NSCT domain was proposed. Firstly, the permuted alias image was blurred again, low frequency subband coefficients and varieties of directional bandpass subband coefficients of the original image and the blurred version were obtained by spare decomposition based on NSCT domain. Secondly, summation image was gotten by coefficient redundancy. Then, the summation image was blocked, the correlation coefficients were estimated by each corresponding sub-block, the permuting image could be separa- ted by using threshold method. Experimental results show that the proposed algorithm can separate the permuting image effectively from the permuted alias image in spite of the motion blurred direction, blur degree, size, location and number of permuting image. And correct separation rate of the permuting image is higher than the Blind Separation of Permuted Image Based on Double Blur Correlation and Blind Separation of Permuted Alias Image using double blur correlation by wavelet transform.

关 键 词:盲分离 置换混叠图像 NSCT 运动模糊 二次模糊相关性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象