代价敏感的监督流形学习人脸识别方法  

Face Recognition Method Based on Cost-Sensitive Supervised Manifold Learning

在线阅读下载全文

作  者:崔业勤[1] 高建国[1] 

机构地区:[1]廊坊师范学院数学与信息科学学院,河北廊坊065000

出  处:《系统仿真学报》2016年第5期1077-1085,共9页Journal of System Simulation

摘  要:基于子空间学习的人脸识别均假设所有错误识别会导致一样的损失。在人脸识别应用中,不同的错误识别造成的损失则不同。提出一种代价敏感的监督流形学习人脸识别方法,该方法采用一个代价矩阵来指定不同的误分类代价,并将其容纳到局部保持投影(Locality Preserving Projections,LPP)算法中,获得相应的代价敏感局部保持投影(Cos-Sen LPP),以实现人脸识别整体损失最小化。在3个人脸数据库上的实验结果表明,与现有的子空间学习方法相比,Cos-Sen LPP方法花费了最少的整体代价。Existing subspace learning-based face recognition methods assume the same loss from all misclassifications. In the real-world face recognition applications, however, different misclassifications can lead to different losses. Motivated by this concern, a cost-sensitive supervised manifold learning approach for face recognition was proposed. The proposed approach incorporated a cost matrix to specify the different costs associated with misclassifications of subjects, into locality preserving projection algorithm, which devised the corresponding cost-sensitive methods, namely, cost-sensitive locality preserving projections(Cos-Sen LPP), to achieve a minimal overall loss. Three face databases were put into the experiments and experimental results show that Cos-Sen LPP method can achieve minimal cost than existing subspace learning-based face recognition methods.

关 键 词:代价敏感 流形学习 人脸识别 局部保持投影 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象