基于模糊加权相似度量的粗糙集数据补齐方法  被引量:3

Data completion with rough sets based on fuzzy weighted similarity measure

在线阅读下载全文

作  者:马福民[1] 刘涛涛[1] 徐安平[1] 

机构地区:[1]南京财经大学信息工程学院,南京210023

出  处:《计算机工程与应用》2016年第9期62-66,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.61403184);江苏省自然科学基金(No.BK2012470);江苏省政府留学基金(No.JS-2013-342);国家电子商务信息处理国际联合研究中心项目(No.2013B01035)

摘  要:目前基于粗糙集的数据补齐方法,大多都是通过计算决策信息系统中具有缺失值的对象与无缺失值的对象之间的相似性,选取相似性最大的对象的属性值来补齐缺失的数据。这类算法的问题在于:计算对象之间的相似性时所有条件属性对于决策属性的重要性是相同的,忽略了条件属性间的差异性。鉴于此,引入了模糊加权相似的概念,根据每个条件属性的重要性以及决策属性对条件属性的依赖度,计算对象间的相似性,提出基于模糊加权相似性度量的粗糙集数据补齐方法,并通过实例计算以及与现有算法的比较分析,说明了方法的有效性。Currently, data completion methods based on rough sets mostly compute the similarities between the object that contains missing values and other objects that do not contain missing values, and then use the values of the most similar object to complete the missing values. However, the problem in these methods is that all the condition attributes are considered as equally important, and they ignore the differences between condition attributes. Given this problem, a new notion of fuzzy weighted similarity is introduced, and the similarities between different objects are computed based on the dependencies of decision attribute on condition attributes and the significances of condition attributes. Moreover, the data completion method with rough sets based on the measurement of fuzzy weighted similarity is proposed. The validity of the proposed method is demonstrated by the results of comparative experiments.

关 键 词:粗糙集 数据补齐 模糊加权 相似性度量 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象